

prépa

Mathématiques

Option Économique

Lundi 25 avril 2022 de 8h00 à 12h00

Durée: 4 heures

Candidats bénéficiant de la mesure « Tiers-temps » : 8h00 – 13h20

L'énoncé comporte 4 pages.

CONSIGNES

Tous les feuillets doivent être identifiables et numérotés par le candidat.

Aucun document n'est permis, aucun instrument de calcul n'est autorisé.

Conformément au règlement du concours, l'usage d'appareils communiquants ou connectés est formellement interdit durant l'épreuve.

Les candidats sont invités à soigner la présentation de leur copie, à mettre en évidence les principaux résultats, à respecter les notations de l'énoncé et à donner des démonstrations complètes – mais brèves – de leurs affirmations.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Ce document est la propriété d'ECRICOME, le candidat est autorisé à le conserver à l'issue de l'épreuve.

Exercice 1

Dans tout l'exercice, $\mathcal{M}_3(\mathbb{R})$ désigne l'ensemble des matrices carrées d'ordre 3 à coefficients réels. On notera respectivement I_3 et 0_3 la matrice identité et la matrice nulle de $\mathcal{M}_3(\mathbb{R})$.

Soit F l'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ de la forme $\begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$, où a et b sont des réels quelconques. Soit G l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que $M^2 = M$.

Partie I

- 1. F est-il un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$? Si oui, déterminer une base de F et préciser la dimension de F.
- 2. G est-il un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$? Si oui, déterminer une base de G et préciser la dimension de G.

3. Soit
$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

- (a) Démontrer que $A \in F \cap G$.
- (b) En déduire un polynôme annulateur de A.
- (c) Déterminer les valeurs propres de A, et donner une base de chaque sous-espace propre associé.
- (d) La matrice A est-elle inversible? Est-elle diagonalisable?

Partie II

On considère dans cette partie une matrice $M=\left(\begin{array}{ccc} a & b & b \\ b & a & b \\ b & b & a \end{array}\right)$ de F avec $(a,b)\in\mathbb{R}^2.$

4. (a) Démontrer que :

$$M \in G \Longleftrightarrow \left\{ \begin{array}{l} a^2 + 2b^2 = a \\ b(b + 2a - 1) = 0 \end{array} \right..$$

- (b) Montrer alors que : $F \cap G = \{I_3, 0_3, A, I_3 A\}$.
- 5. On note $B = I_3 A$.

Démontrer que la famille (A, B) est une base de F.

6. (a) On note $\alpha = \frac{4a-b}{3}$ et $\beta = \frac{a+2b}{3}$. Vérifier que :

$$M = \alpha A + \beta B.$$

- (b) Calculer AB et BA.
- (c) Montrer que pour tout entier naturel n:

$$M^n = \alpha^n A + \beta^n B.$$

- 7. (a) Montrer que M est inversible si et seulement si $\alpha \neq 0$ et $\beta \neq 0$.
- (b) Si α et β sont deux réels non nuls, montrer que pour tout entier naturel n, on a:

$$M^{-n} = \alpha^{-n}A + \beta^{-n}B.$$

Partie III

Soient
$$T = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$
 et $Y = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$.

On considère la suite (X_n) de matrices colonnes définie par $X_0 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad X_{n+1} = TX_n + Y.$$

- 8. Calculer la matrice $I_3 T$ et exprimer cette matrice en fonction de A et B.
- 9. À l'aide de la question 7, calculer la matrice $(I_3 T)^{-1}$.
- 10. Démontrer qu'il existe une unique matrice colonne L, que l'on déterminera, telle que :

$$L = TL + Y$$
.

11. Démontrer que pour tout entier naturel n, on a : $X_{n+1} - L = T(X_n - L)$, puis que :

$$\forall n \in \mathbb{N}, \quad X_n - L = T^n(X_0 - L).$$

12. Pour tout entier naturel n, exprimer X_n en fonction de A, B, L, X_0 et n.

Exercice 2

Pour tout réel x > 0, on pose :

$$g(x) = \exp\left(\left(2 - \frac{1}{x}\right)\ln(x)\right).$$

Partie I : Étude de la fonction g

- 1. Déterminer $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to +\infty} g(x)$.
- 2. Soit h la fonction définie sur \mathbb{R}_+^* par :

$$\forall x > 0, \ h(x) = \ln(x) + 2x - 1.$$

- (a) Démontrer que la fonction h est strictement croissante sur \mathbb{R}_+^* .
- (b) Démontrer qu'il existe un unique réel $\alpha > 0$ tel que $h(\alpha) = 0$. Justifier que $\frac{1}{2} < \alpha < 1$.
- (c) Démontrer que : $\forall x > 0, \ g'(x) = \frac{1}{x^2}h(x)g(x).$
- (d) En déduire les variations de la fonction g sur \mathbb{R}_+^* .
- 3. Démontrer que :

$$g(x) - x^2 \underset{x \to +\infty}{\sim} -x \ln(x).$$

Partie II : Étude d'une suite récurrente

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par son premier terme $u_0>0$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+1} = g(u_n).$$

- 4. Démontrer par récurrence que, pour tout entier naturel n, u_n existe et $u_n > 0$.
- 5. Écrire une fonction Scilab qui prend en argument un réel u0 et un entier n et renvoie sous forme de matrice ligne la liste des n+1 premières valeurs de la suite $(u_n)_{n\in\mathbb{N}}$ de premier terme $u_0=u_0$.
- 6. (a) Étudier le signe de $(x-1) \ln x$ pour x > 0.
 - (b) Montrer que : $\forall x > 0, \ \frac{g(x)}{x} \geqslant 1.$
 - (c) En déduire que pour tout réel x > 0, on a $g(x) \ge x$, et que l'équation g(x) = x admet 1 comme unique solution.
- 7. Étudier les variations de la suite $(u_n)_{n\in\mathbb{N}}$.
- 8. Dans cette question uniquement, on suppose que $u_0 \in \left[\frac{1}{2}, 1\right]$.
 - (a) Démontrer que : $\forall n \in \mathbb{N}, \ u_n \in \left[\frac{1}{2}, 1\right].$
 - (b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge, et déterminer sa limite.

- 9. Dans cette question uniquement, on suppose que $u_0 > 1$.
 - (a) Démontrer que : $\forall n \in \mathbb{N}, u_n > 1$.
 - (b) Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.
- 10. Dans cette question uniquement, on suppose que $0 < u_0 < \frac{1}{2}$. La suite $(u_n)_{n \in \mathbb{N}}$ est-elle convergente?

Partie III : Extrema de la fonction f

Pour tout couple $(x, y) \in \mathbb{R}_+^* \times \mathbb{R}$, on note :

$$f(x,y) = x^{y-\frac{1}{x}} = \exp\left(\left(y - \frac{1}{x}\right)\ln(x)\right).$$

- 11. Démontrer que la fonction f est de classe \mathscr{C}^2 sur l'ouvert $\mathbb{R}_+^* \times \mathbb{R}$.
- 12. Démontrer que :

$$\forall (x,y) \in \mathbb{R}_+^* \times \mathbb{R}, \begin{cases} \partial_1(f)(x,y) = \frac{\ln(x) + xy - 1}{x^2} f(x,y), \\ \partial_2(f)(x,y) = \ln(x) f(x,y). \end{cases}$$

- 13. Montrer que la fonction f admet un unique point critique a et préciser les coordonnées de a.
- 14. Montrer que la matrice hessienne de f au point a est $\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$.
- 15. La fonction f admet-elle en a un extremum local?
- 16. Démontrer que la fonction f n'admet pas d'extremum global sur $\mathbb{R}_+^* \times \mathbb{R}$.

Exercice 3

On dispose de trois urnes U_1 , U_2 et U_3 , et d'une infinité de jetons numérotés 1, 2, 3, 4, ...

On répartit un par un les jetons dans les urnes : pour chaque jeton, on choisit au hasard et avec équiprobabilité une des trois urnes dans laquelle on place le jeton. Le placement de chaque jeton est indépendant de tous les autres jetons, et la capacité des urnes en nombre de jetons n'est pas limitée.

Pour tout entier naturel n non nul, on note X_n (respectivement Y_n , Z_n) le nombre de jetons présents dans l'urne 1 (respectivement l'urne 2, l'urne 3) après avoir réparti les n premiers jetons.

Partie I

Pour tout entier naturel n non nul, on note V_n l'événement : « Après la répartition des n premiers jetons, au moins une urne reste vide ».

- 1. Soit $n \in \mathbb{N}^*$.
 - (a) Justifier que X_n , Y_n et Z_n suivent la même loi binomiale dont on précisera les paramètres.
 - (b) Expliciter $P(X_n = 0)$ et $P(X_n = n)$.
 - (c) Justifier que $(Y_n = 0) \cap (Z_n = 0) = (X_n = n)$.
 - (d) Exprimer l'événement V_n à l'aide des événements $(X_n=0)$, $(Y_n=0)$ et $(Z_n=0)$.
 - (e) En déduire que : $P(V_n) = 3\left(\frac{2}{3}\right)^n 3\left(\frac{1}{3}\right)^n$.
- 2. On note V l'événement : « Au moins l'une des trois urnes reste toujours vide ». Exprimer l'événement V à l'aide des événements V_n , puis démontrer que P(V) = 0.
- 3. Soit T la variable aléatoire égale au nombre de jetons nécessaires pour que, pour la première fois, chaque urne contienne au moins un jeton.
 - (a) On rappelle qu'en Scilab la commande grand(n,p,'uin',a,b) renvoie une matrice aléatoire à n lignes et p colonnes où chaque coefficient est la réalisation d'une variable aléatoire indépendante suivant une loi uniforme sur l'intervalle [a, b], ces variables aléatoires étant mutuellement indépendantes.
 Compléter la fonction Scilab ci-dessous pour qu'elle simule le placement des intens jusqu'eu moment où chaque.

Compléter la fonction Scilab ci-dessous pour qu'elle simule le placement des jetons jusqu'au moment où chaque urne contient au moins un jeton, et pour qu'elle renvoie la valeur prise par la variable aléatoire T.

- (b) Écrire un script Scilab qui simule 10000 fois la variable aléatoire T et qui renvoie une valeur approchée de son espérance (en supposant que cette espérance existe).
- 4. Déterminer $T(\Omega)$.
- 5. Démontrer que : $\forall n \in T(\Omega), \quad P(T=n) = P(V_{n-1}) P(V_n).$
- 6. Démontrer que la variable aléatoire T admet une espérance, et calculer cette espérance.

Partie II

Pour tout entier naturel n non nul, on note W_n la variable aléatoire égale au nombre d'urne(s) encore vide(s) après le placement des n premiers jetons.

- 7. (a) Donner la loi du couple (X_2, W_2) .
 - (b) En déduire la loi de W_2 , et calculer son espérance.
 - (c) Calculer la covariance de X_2 et W_2 .
 - (d) Les variables aléatoires X_2 et W_2 sont-elles indépendantes?

Soit n un entier naturel supérieur ou égal à 3.

- 8. Déterminer $W_n(\Omega)$.
- 9. Pour $i \in [1,3]$, on note $W_{n,i}$ la variable aléatoire égale à 1 si l'urne i est encore vide après le placement des n premiers jetons, et qui vaut 0 sinon.
 - (a) Montrer que : $\forall i \in [1,3], \ E(W_{n,i}) = \left(\frac{2}{3}\right)^n$.
 - (b) Exprimer la variable aléatoire W_n en fonction des variables aléatoires $W_{n,1}$, $W_{n,2}$ et $W_{n,3}$.
 - (c) Exprimer alors $E(W_n)$ en fonction de n.
- 10. Démontrer que : $P((X_n = n) \cap (W_n = 2)) = \left(\frac{1}{3}\right)^n$. Pour $k \in [1, n-1]$, quelle est la valeur de $P((X_n = k) \cap (W_n = 2))$?
- 11. Démontrer que : $\forall k \in \llbracket 1, n-1 \rrbracket$, $P\Big((X_n = k) \cap (W_n = 1)\Big) = \frac{2\binom{n}{k}}{3^n}$. Que vaut $P\Big((X_n = n) \cap (W_n = 1)\Big)$?
- 12. Démontrer que :

$$E(X_n W_n) = 2nP\Big((X_n = n) \cap (W_n = 2)\Big) + \sum_{k=1}^{n-1} kP\Big((X_n = k) \cap (W_n = 1)\Big).$$

- 13. Montrer alors que $E(X_nW_n) = n\left(\frac{2}{3}\right)^n$, puis calculer la covariance de X_n et W_n .
- 14. Interpréter le résultat obtenu à la question précédente.

